Real number λ and vector *z* are called an eigen pair of matrix *A*, if *Az = λz*. For a real matrix *A* there could be both the problem of finding the eigenvalues and the problem of finding the eigenvalues and eigenvectors. There could also be the problem of finding the eigen pairs which meet given conditions (say, only finding the biggest by absolute value eigenvalues).

If matrix *A* of size NxN is symmetric, it has *N* eigenvalues (not necessarily distinctive) and *N* corresponding eigenvectors which form an orthonormal basis (generally, eigenvectors are not orthogonal, and their number could be lower than *N*).

This algorithm finds all the eigenvalues (and, if needed, the eigenvectors) of a symmetric tridiagonal matrix. It is also used for finding eigen pairs of an arbitrary symmetric matrix, as each symmetric matrix could be reduced to tridiagonal form by the orthogonal transformation of similarity which doesn't change the matrix eigenvalues.

The **SMatrixTDEVD** subroutine finds the eigenvalues (and, if needed, the eigenvectors) of a tridiagonal matrix which is given by its main diagonal **D** and secondary diagonal **E**.

The **ZNeeded** parameter controls whether the eigenvectors are required or not. It is possible to get the eigenvectors of a tridiagonal matrix or pass a transformation matrix which reduces the symmetric matrix to tridiagonal form to the algorithm and get the eigenvalues of an original symmetric matrix.

The algorithm is iterative, so, theoretically, it may not converge. In this case, it returns False.

*This algorithm is transferred from the LAPACK library.*

*This article is licensed for personal use only.*

ALGLIB Project offers you two editions of ALGLIB:

**ALGLIB Free Edition**:

delivered for free

offers full set of numerical functionality

extensive algorithmic optimizations

no low level optimizations

non-commercial license

**ALGLIB Commercial Edition**:

flexible pricing

offers full set of numerical functionality

extensive algorithmic optimizations

high performance (SMP, SIMD)

commercial license with support plan

Links to download sections for Free and Commercial editions can be found below:

C++ library.

Delivered with sources.

Monolithic design.

Extreme portability.

Delivered with sources.

Monolithic design.

Extreme portability.

C# library with native kernels.

Delivered with sources.

VB.NET and IronPython wrappers.

Extreme portability.

Delivered with sources.

VB.NET and IronPython wrappers.

Extreme portability.

Delphi wrapper around C core.

Delivered as precompiled binary.

Compatible with FreePascal.

Delivered as precompiled binary.

Compatible with FreePascal.

CPython wrapper around C core.

Delivered as precompiled binary.

Delivered as precompiled binary.